Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069398

RESUMO

Bacteria use cell surface proteins to mediate host-pathogen interactions. Proteins responsible for cell adhesion, including E-cadherin, serve as receptors for entry into the host cell. We have previously shown that an increase in eukaryotic cell sensitivity to Serratia grimesii correlates with an increase in E-cadherin expression. On the other hand, Serratia proteamaculans invasion involves the EGFR, which can interact with E-cadherin on the surface of host cells. Therefore, we investigated the role of E-cadherin in Serratia invasion into M-HeLa and Caco-2 cells. Bacterial infection increased E-cadherin expression in both cell lines. Moreover, E-cadherin was detected in the Caco-2 cells in a full-length form and in the M-HeLa cells in only a truncated form in response to incubation with bacteria. Transfection with siRNA targeting E-cadherin inhibited S. proteamaculans invasion only into the Caco-2 cells. Thus, only full-length E-cadherin is involved in S. proteamaculans invasion. On the other hand, transfection with siRNA targeting E-cadherin inhibited S. grimesii invasion into both cell lines. Thus, not only may full-length E-cadherin but also truncated E-cadherin be involved in S. grimesii invasion. Truncated E-cadherin can be formed as a result of cleavage by bacterial proteases or the Ca2+-activated cellular protease ADAM10. The rate of Ca2+ accumulation in the host cells depends on the number of bacteria per cell upon infection. During incubation, Ca2+ accumulates only when more than 500 S. grimesii bacteria are infected per eukaryotic cell, and only under these conditions does the ADAM10 inhibitor reduce the sensitivity of the cells to bacteria. An EGFR inhibitor has the same quantitative effect on S. grimesii invasion. Apparently, as a result of infection with S. grimesii, Ca2+ accumulates in the host cells and may activate the ADAM10 sheddase, which can promote invasion by cleaving E-cadherin and, as a result, triggering EGFR signaling. Thus, the invasion of S. proteamaculans can only be promoted by full-length E-cadherin, and S. grimesii invasion can be promoted by both full-length and truncated E-cadherin.


Assuntos
Caderinas , Serratia , Humanos , Células CACO-2 , Caderinas/metabolismo , Endopeptidases/metabolismo , Receptores ErbB/metabolismo , Células HeLa , RNA Interferente Pequeno/metabolismo , Serratia/metabolismo
2.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672239

RESUMO

G-protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. They modulate key physiological functions and are required in diverse developmental processes including embryogenesis, but their role in pluripotency maintenance and acquisition during the reprogramming towards hiPSCs draws little attention. Meanwhile, it is known that more than 106 GPCRs are overexpressed in human pluripotent stem cells (hPSCs). Previously, to identify novel effectors of reprogramming, we performed a high-throughput RNA interference (RNAi) screening assay and identified adhesion GPCR, GPR123, as a potential reprogramming effector. Its role has not been explored before. Herein, by employing GPR123 RNAi we addressed the role of GPR123 for hPSCs. The suppression of GPR123 in hPSCs leads to the loss of pluripotency and differentiation, impacted colony morphology, accumulation of cells at the G2 phase of the cell cycle, and absence of the scratch closure. Application of the GPR123 RNAi at the initiation stage of reprogramming leads to a decrease in the percentage of the "true" hiPSC colonies, a drop in E-cadherin expression, a decrease in the percentage of NANOG+ nuclei, and the absence of actin cytoskeleton remodeling. Together this leads to the absence of the alkaline-phosphatase-positive hiPSCs colonies on the 18th day of the reprogramming process. Overall, these data indicate for the first time the essential role of GPR123 in the maintenance and acquisition of pluripotency.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Reprogramação Celular , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
Neurochem Res ; 48(5): 1455-1467, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36495386

RESUMO

The effects of prenatal hypoxia on neurodevelopment are predominantly associated with impaired maternal glucocorticoid stimulation of the fetus, which is "imprinted" in altered sensitivity of glucocorticoid reception in brain structures of offspring and can affect brain plasticity during lifespan. This study aimed to investigate response of the brain glucocorticoid system to mild stress (MS) in adult rats that survived prenatal severe hypoxia (PSH) on embryonic days 14-16. In response to MS the control (but not PSH) rats demonstrate increased corticosterone levels, a decrease in exploratory activity and increased anxiety. In the raphe nuclei of adult PSH rats the expression of glucocorticoid receptors (GR) is increased without changes in serotonin levels in comparison with the control. MS induces a decrease in GR expression accompanied by up-regulation of tryptophan hydroxylase 2 (tph2) and down-regulation of monoamine oxidase A (maoa) transcription in the raphe nuclei of both control and PSH groups. PSH also causes significant deviations in GR expression and GR-dependent transcription in the hippocampus, the medial prefrontal cortex, but not in the amygdala of rats. However, in response to MS, PSH rats demonstrate mild changes in their activity, while in control animals the MS-induced activity of the glucocorticoid system in these brain structures is similar to intact PSH animals. Impaired activity of the glucocorticoid system in the extrahypothalamic brain structures of PSH rats is accompanied by increase in the hypothalamic corticotropin-releasing hormone (CRH) levels in comparison with the control regardless of MS. Synthesis of proopiomelanocortin (POMC) and release of adrenocorticotropic hormone (ACTH) into the blood are decreased in response to MS in the pituitary of control rats, which demonstrates a negative glucocorticoid feedback mechanism. Meanwhile, in the pituitary of PSH rats reduced POMC levels were found regardless of MS. Thus, prenatal hypoxia causes depression-like patterns in the brain glucocorticoid system with adverse reaction to mild stressors.


Assuntos
Glucocorticoides , Pró-Opiomelanocortina , Feminino , Gravidez , Ratos , Animais , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Corticosterona/metabolismo , Hipotálamo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Receptores de Glucocorticoides/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
4.
Biol Direct ; 17(1): 40, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476259

RESUMO

BACKGROUND: ACTN4 is an actin-binding protein involved in many cellular processes, including cancer development. High ACTN4 expression is often associated with a poor prognosis. However, it has been identified as a positive marker for platinum-based adjuvant chemotherapy for non-small cell lung cancer (NSCLC). The goal of our study was to investigate the involvement of ACTN4 in the NSCLC cells' response to the genotoxic drugs. RESULTS: We generated H1299 cells with the ACTN4 gene knock-out (ACTN4 KO), using the CRISPR/Cas9 system. The resistance of the cells to the cisplatin and etoposide was analyzed with the MTT assay. We were also able to estimate the efficiency of DNA repair through the DNA comet assay and gamma-H2AX staining. Possible ACTN4 effects on the non-homologous end joining (NHEJ) and homologous recombination (HR) were investigated using pathway-specific reporter plasmids and through the immunostaining of the key proteins. We found that the H1299 cells with the ACTN4 gene knock-out did not show cisplatin-resistance, but did display a higher resistance to the topoisomerase II inhibitors etoposide and doxorubicin, suggesting that ACTN4 might be somehow involved in the repair of DNA strand breaks. Indeed, the H1299 ACTN4 KO cells repaired etoposide- and doxorubicin-induced DNA breaks more effectively than the control cells. Moreover, the ACTN4 gene knock-out enhanced NHEJ and suppressed HR efficiency. Supporting the data, the depletion of ACTN4 resulted in the faster assembly of the 53BP1 foci with a lower number of the phospho-BRCA1 foci after the etoposide treatment. CONCLUSIONS: Thus, we are the first to demonstrate that ACTN4 may influence the resistance of cancer cells to the topoisomerase II inhibitors, and affect the efficiency of the DNA double strand breaks repair. We hypothesize that ACTN4 interferes with the assembly of the NHEJ and HR complexes, and hence regulates balance between these DNA repair pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores da Topoisomerase II , Doxorrubicina , Pulmão , Actinina
5.
Biomedicines ; 9(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34829821

RESUMO

Despite multimodal approaches for the treatment of multiforme glioblastoma (GBM) advances in outcome have been very modest indicating the necessity of novel diagnostic and therapeutic strategies. Currently, mesenchymal stem cells (MSCs) represent a promising platform for cell-based cancer therapies because of their tumor-tropism, low immunogenicity, easy accessibility, isolation procedure, and culturing. In the present study, we assessed the tumor-tropism and biodistribution of the superparamagnetic iron oxide nanoparticle (SPION)-labeled MSCs in the orthotopic model of C6 glioblastoma in Wistar rats. As shown in in vitro studies employing confocal microscopy, high-content quantitative image cytometer, and xCelligence system MSCs exhibit a high migratory capacity towards C6 glioblastoma cells. Intravenous administration of SPION-labeled MSCs in vivo resulted in intratumoral accumulation of the tagged cells in the tumor tissues that in turn significantly enhanced the contrast of the tumor when high-field magnetic resonance imaging was performed. Subsequent biodistribution studies employing highly sensitive nonlinear magnetic response measurements (NLR-M2) supported by histological analysis confirm the retention of MSCs in the glioblastoma. In conclusion, MSCs due to their tumor-tropism could be employed as a drug-delivery platform for future theranostic approaches.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33662545

RESUMO

Lipid rafts are membrane microdomains featuring high cholesterol, sphingolipid, and protein content. These microdomains recruit various receptors, ion channels, and signaling molecules for coordination of various cellular functions, including synaptic transmission, immune response, cytoskeletal organization, adhesion, and migration. Many of these processes also depend on Ca2+ intake. We have previously shown in Jurkat cells that activity of transient receptor potential vanilloid, type 6 (TRPV6) calcium channel, and TRPV6-mediated Ca2+ influx, depend on lipid raft integrity. In this study, using the transwell cell migration assay and time-lapse video microscopy with Jurkat cells, we found that lipid raft destruction was associated with: inhibited cell adhesion and migration; and decreased mean speed, maximum speed, and trajectory length. Using String Server, we constructed a Protein Interaction Network (PIN). The network indicated that TRPV6 proteins interact with the highest probability (0.9) with Src family kinase members (SFKs) involved in processes related to cell migration. Analysis of detergent-resistant membrane fractions and immunoelectron microscopy data confirmed an association in lipid rafts between TRPV6 and Lck kinase, an SFKs member. Destruction of lipid rafts led to uncoupling of TRPV6 clusters with Lck and their departure from the plasma membrane into the cytosol of the cells. Src family kinases are generally associated with their roles in tumor invasion and progression, epithelial-mesenchymal transitions, angiogenesis, and metastatic development. We suggest that a functional interaction between TRPV6 calcium channels and SFKs members in lipid rafts is one of necessary elements of migration and oncogenic signaling in leukemia cells.


Assuntos
Movimento Celular , Leucemia/patologia , Microdomínios da Membrana/metabolismo , Adesão Celular , Humanos , Células Jurkat , Transporte Proteico , Canais de Cátion TRPV/metabolismo
7.
Mol Biol Rep ; 47(5): 3867-3883, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372170

RESUMO

Here, we document changes in cell motility and organization of the contractile apparatus of human umbilical cord Wharton's jelly mesenchymal stem cells (MSCWJ-1) in the process of replicative senescence. Colocalization dynamics of F-actin and actin-binding proteins (myosin-9, α-actinin-4, RhoA) were examined in the MSCWJ-1 cell line. The results show that nuclear-cytoplasmic redistribution of RhoA occurs during replicative senescence, with maximal RhoA/nucleus colocalization evident at passage 15. At that time point, decreases in colocalization, namely myosin-9/F-actin and α-actinin-4/F-actin, were seen and myosin-9 was found in cytosolic extracts in the assembly-incompetent form. Using an automated intravital confocal cytometry system and quantitative analysis of MSCWJ-1 movements, we found that changes in cytoskeletal organization correlate with cell motility characteristics over a time period from passages 9 to 38. The factors examined (cytoskeleton structure, cell motility) indicate that the process by which cells transition to replicative senescence is best represented as three stages. The first stage lasts from cell culture isolation to passage 15 and is characterized by: accumulation of actin-binding proteins in assembly-incompetent forms; nuclear RhoA accumulation; and an increase in movement tortuosity. The second stage extends from passages 15 to 28 and is characterized by: an increase in the structural integrity of the actin cytoskeleton; exit of RhoA and alpha-actinin-4 from the nucleus; and a decrease in path tortuosity. The third stage extends from passage 28 to 38 and is marked by: a plateau in actin cytoskeleton structural integrity; significant decreases in nuclear RhoA levels; and decreases in cell speed.


Assuntos
Movimento Celular/fisiologia , Senescência Celular/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Sangue Fetal/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Miosinas/metabolismo , Cordão Umbilical
8.
J Phycol ; 56(4): 941-952, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32170721

RESUMO

Prorocentrum minimum is a potentially toxic marine dinoflagellate that often forms massive blooms in estuarine and coastal sea waters. In this study, the life cycle of P. minimum was investigated and sexual reproduction in culture was described for the first time. Morphology of the mitotic stages was revised and several distinguishing features from sexual steps were described. The sexual reproductive stages were observed in the stationary culture and compared with a well-studied closely related species, Prorocentrum micans. Prorocentrum minimum has a haplontic life cycle and homothallic sexual process. The gametes were isogamous and morphologically indistinguishable from the vegetative cells. Unlike P. micans, P. minimum isogametes fused, but did not conjugate, partially reorganizing their cell coverings. Newly formed planozygotes were distinguished by their irregular shape and a large asymmetrically located nucleus. No long-term resting cyst stages (hypnozygotes) were documented. The late planozygotes underwent meiosis and formed tetrads of cells. The second meiotic division could be delayed or arrested in one of the daughter nuclei leading to formation of trinucleate cells with three pairs of flagella. So, similar to P. micans, P. minimum may have two possible scenarios of sexual division: (a) formation of a four-cell stage through two successive divisions or (b) asynchronous divisions of the zygote. Changes in the DNA content were confirmed by quantitative image cytometry.


Assuntos
Dinoflagelados , Animais , Núcleo Celular , Estágios do Ciclo de Vida , Reprodução , Zigoto
9.
J Mol Neurosci ; 70(5): 635-646, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31865524

RESUMO

The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy. Graphical abstract HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus.


Assuntos
Apoptose , Hipocampo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo , Via de Pentose Fosfato , Topotecan/farmacologia , Animais , Regulação para Baixo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Ratos , Ratos Wistar , Topotecan/uso terapêutico
10.
Cells ; 8(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766144

RESUMO

The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.


Assuntos
Actinina/genética , Transformação Celular Neoplásica/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/etiologia , Neoplasias/patologia , Actinina/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Proteoma , Transdução de Sinais
11.
Cell Cycle ; 17(15): 1917-1930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109812

RESUMO

The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (ISMBDs) that stabilize p53 on the protein level. The likely mechanism behind their positive effect on p53 is mediated via the competitive interaction with Mdm2. Importantly, unlike Nutlin, these compounds selectively promoted p53-mediated cell death. These novel pharmacological activators of p53 can serve as valuable molecular tools for probing p53-positive tumors and set up the stage for development of new anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Isatina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Imidazóis/farmacologia , Isatina/análogos & derivados , Camundongos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores
12.
Cell Cycle ; 17(5): 616-626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29251177

RESUMO

Alpha-actinin 4 (ACTN4) is an actin-binding protein of the spectrin superfamily. ACTN4 is found both in the cytoplasm and nucleus of eukaryotic cells. The main function of cytoplasmic ACTN4 is stabilization of actin filaments and their binding to focal contacts. Nuclear ACTN4 takes part in the regulation of gene expression following by activation of certain transcription factors, but the mechanisms of regulation are not completely understood. Our previous studies have demonstrated the interaction of ACTN4 with the RelA/p65 subunit of NF-kappaB factor and the effect on its transcriptional activity in A431 and HEK293T cells. In the present work, we investigated changes in the composition of nuclear ACTN4-interacting proteins in non-small cell lung cancer cells H1299 upon stable RELA overexpression. We showed that ACTN4 was present in the nuclei of H1299 cells, regardless of the RELA expression level. The presence of ectopic RelA/p65 in H1299 cells increased the number of proteins interacting with nuclear ACTN4. Stable expression of RELA in these cells suppressed cell proliferation, which was further affected by simultaneous ACTN4 overexpression. We detected no significant effect on cell cycle but the apoptosis rate was increased in cells with a double RELA/ACTN4 overexpression. Interestingly, when expressed individually ACTN4 promoted proliferation of lung cancer cells. Furthermore, the bioinformatics analysis of gene expression in lung cancer patients suggested that overexpression of ACTN4 correlated with poor survival prognosis. We hypothesize that the effect of RELA on proliferation and apoptosis of H1299 cells can be mediated via affecting the interactome of ACTN4.


Assuntos
Actinina/metabolismo , Apoptose , Fator de Transcrição RelA/metabolismo , Actinina/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fator de Transcrição RelA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...